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Problems 10-15 give you an opportunity for practice in working with spacetime four-vectors and
Lorentz transformations:

10. (Light cone)
(a.)
Event A occurs at spacetime point (ct, x, y, z) =
(0, 1, 1, 1); event B occurs at (1, 0, 0, 0), both in
an inertial system S. Is there an inertial sys-
tem S ′ in which events A and B occur at the
same spatial coordinates? If so, find c|t′A − t′B |,
c times the magnitude of the time interval in S ′

between the two events.
(b.)
Is there an inertial system S ′′ in which events A
and B occur simultaneously? If so, find |	r ′′

A−	r ′′
B |,

the distance in S ′′ between the two events.
(c.)
Can event A be the cause of event B, or vice
versa? Explain.
(d.)
Event D occurs at spacetime point (ct, x, y, z) =
(−1, 0, 0, 0); event E occurs at (2, 1, 1, 0), both in
an inertial system S. Is there an inertial system
S ′ in which events D and E occur simultane-
ously? If so, find |	r ′

E − 	r ′
D|, the magnitude of

the distance in S ′ between the two events.
(e.)
Is there an inertial system S ′′ in which events D
and E occur at the same spatial coordinates? If
so, find c|t′′E − t′′D|, c times the magnitude of the
time interval in S ′′ between the two events.

11.
Using e.g. the method of Short Course in Special
Relativity [scsr] §7, obtain the 4 × 4 Lorentz
transformation matrix for the case in which
frame S ′ moves with respect to frame S with
speed β0c in an arbitrary direction (n1, n2, 0) in
the x-y plane, where 	n is a unit vector.

12.
(a.)
In scsr §8, clock time intervals measured in a
frame in which the clock is not at rest are shown
to be dilated by the factor γ0. This analysis

used the inverse Lorentz transformation. Rean-
alyze the same problem using the direct Lorentz
transformation. Is the answer the same?
(b.)
In scsr §9, the length of a rod measured in a
frame in which the rod is not at rest is shown to
be contracted by the factor 1/γ0. This analysis
used the direct Lorentz transformation. Reana-
lyze the same problem using the inverse Lorentz
transformation. Is the answer the same?

13. (Addition of velocities)
In texts that do not emphasize the rapidity or
boost parameter η, the Einstein law for the ad-
dition of velocities is derived less elegantly as
follows (see scsr Fig. 7). Denote by x1 (x′1)
the x coordinate of the origin of S ′′ as observed
in the lab frame S (moving frame S ′). Write a
standard inverse Lorentz transformation

x0 = γx′0 + γβx′1

x1 = γx′1 + γβx′0 .

Then take the differential of it: dx0 = . . . ;
dx1 = . . . . Divide the bottom by the top
equation and identify

dx1

dx0
= β′′ = c−1 × speed of S ′′ in S

dx′1

dx′0 = β′ = c−1 × speed of S ′′ in S ′ .

Obtain the Einstein law for the addition of ve-
locities (scsr Eq. (24)):

β′′ =
β + β′

1 + ββ′ .

14.
Consider the standard case in which two Lorentz
frames S and S ′ coincide at t = t′ = 0, with
frame S ′ moving at velocity βc x̂ with respect to
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frame S. As seen in a third frame S ′′, also mov-
ing along x̂ with respect to S, two clocks fixed
to the origins of frames S and S ′, respectively,
appear to agree. With respect to frame S, con-
sidering that rapidity (“boost”) is the additive
parameter of the Lorentz transformation, show
that the speed β′′c of frame S ′′ is given by

β′′ = tanh
(

1
2 tanh

−1 β
)

.

15. (Taylor & Wheeler problem 51)
The clock paradox, version 3.
Can one go to a point 7000 light years away –
and return – without aging more than 40 years?
“Yes” is the conclusion reached by an engineer
on the staff of a large aviation firm in a recent
report. In his analysis the traveler experiences a
constant “1-g” acceleration (or deceleration, de-
pending on the stage reached in her journey).
Assuming this limitation, is the engineer right in
his conclusion? (For simplicity, limit attention
to the first phase of the motion, during which
the astronaut accelerates for 10 years – then
double the distance covered in that time to find
how far it is to the most remote point reached
in the course of the journey.)
(a.)
The acceleration is not g = 9.8 meters per sec-
ond per second relative to the laboratory frame.
If it were, how many times faster than light
would the spaceship be moving at the end of
ten years (1 year = 31.6 × 106 seconds)? If the
acceleration is not specified with respect to the
laboratory, then with respect to what is it spec-
ified? Discussion: Look at the bathroom scales
on which one is standing! The rocket jet is al-
ways turned up to the point where these scales
read one’s correct weight. Under these condi-
tions one is being accelerated at 9.8 meters per
second per second with respect to a spaceship
that (1) instantaneously happens to be riding
alongside with identical velocity, but (2) is not
being accelerated, and, therefore (3) provides
the (momentary) inertial frame of reference rel-
ative to which the acceleration is g.
(b.)
How much velocity does the spaceship have after
a given time? This is the moment to object to the
question and to rephrase it. Velocity βc is not

the simple quantity to analyze. The simple quan-
tity is the boost parameter η. This parameter is
simple because it is additive in this sense: Let the
boost parameter of the spaceship with respect to
the imaginary instantaneously comoving inertial
frame change from 0 to dη in an astronaut time
dτ . Then the boost parameter of the spaceship
with respect to the laboratory frame changes in
the same astronaut time from its initial value η
to the subsequent value η+dη. Now relate dη to
the acceleration g in the instantaneously comov-
ing inertial frame. In this frame g dτ = c dβ =
c d(tanh η) = c tanh (dη) ≈ c dη so that

c dη = g dτ

Each lapse of time dτ on the astronaut’s watch is
accompanied by an additional increase dη = g

c dτ
in the boost parameter of the spaceship. In
the laboratory frame the total boost parame-
ter of the spaceship is simply the sum of these
additional increases in the boost parameter. As-
sume that the spaceship starts from rest. Then
its boost parameter will increase linearly with
astronaut time according to the equation

cη = gτ

This expression gives the boost parameter η of
the spaceship in the laboratory frame at any
time τ in the astronaut’s frame.
(c.)
What laboratory distance x does the spaceship
cover in a given astronaut time τ? At any
instant the velocity of the spaceship in the lab-
oratory frame is related to its boost parameter
by the equation dx/dt = c tanh η so that the
distance dx covered in laboratory time dt is

dx = c tanh η dt

Remember that the time between ticks of the
astronaut’s watch dτ appear to have the larger
value dt in the laboratory frame (time dilation)
given by the expression

dt = cosh η dτ

Hence the laboratory distance dx covered in as-
tronaut time dτ is

dx = c tanh η cosh η dτ = c sinh η dτ
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Use the expression cη = gτ from part (b.) to
obtain

dx = c sinh
(gτ

c

)
dτ

Sum (integrate) all these small displacements dx
from zero astronaut time to a final astronaut
time to find

x =
c2

g

[
cosh

(gτ

c

)
− 1

]

This expression gives the laboratory distance x
covered by the spaceship at any time τ in the
astronaut’s frame.
(d.)
Plugging in the appropriate numerical values,
determine whether the engineer is correct in his
conclusion reported at the beginning of this ex-
ercise.
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